-
1 integer multiplication and division
целочисленное умножение и деление
—
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
Англо-русский словарь нормативно-технической терминологии > integer multiplication and division
-
2 integer multiplication and division
• celobrojno mnozenje i deljenje; celobrojno množenje i deljenjeEnglish-Serbian dictionary > integer multiplication and division
-
3 Napier (Neper), John
SUBJECT AREA: Electronics and information technology[br]b. 1550 Merchiston Castle, Edinburgh, Scotlandd. 4 April 1617 Merchiston Castle, Edinburgh, Scotland[br]Scottish mathematician and theological writer noted for his discovery of logarithms, a powerful aid to mathematical calculations.[br]Born into a family of Scottish landowners, at the early age of 13 years Napier went to the University of St Andrews in Fife, but he apparently left before taking his degree. An extreme Protestant, he was active in the struggles with the Roman Catholic Church and in 1594 he dedicated to James VI of Scotland his Plaine Discovery of the Whole Revelation of St John, an attempt to promote the Protestant case in the guise of a learned study. About this time, as well as being involved in the development of military equipment, he devoted much of his time to finding methods of simplifying the tedious calculations involved in astronomy. Eventually he realized that by representing numbers in terms of the power to which a "base" number needed to be raised to produce them, it was possible to perform multiplication and division and to find roots, by the simpler processes of addition, substraction and integer division, respectively.A description of the principle of his "logarithms" (from the Gk. logos, reckoning, and arithmos, number), how he arrived at the idea and how they could be used was published in 1614 under the title Mirifici Logarithmorum Canonis Descriptio. Two years after his death his Mirifici Logarithmorum Canonis Constructio appeared, in which he explained how to calculate the logarithms of numbers and gave tables of them to eight significant figures, a novel feature being the use of the decimal point to distinguish the integral and fractional parts of the logarithm. As originally conceived, Napier's tables of logarithms were calculated using the natural number e(=2.71828…) as the base, not directly, but in effect according to the formula: Naperian logx= 107(log e 107-log e x) so that the original Naperian logarithm of a number decreased as the number increased. However, prior to his death he had readily acceded to a suggestion by Henry Briggs that it would greatly facilitate their use if logarithms were simply defined as the value to which the decimal base 10 needed to be raised to realize the number in question. He was almost certainly also aware of the work of Joost Burgi.No doubt as an extension of his ideas of logarithms, Napier also devised a means of manually performing multiplication and division by means of a system of rods known as Napier's Bones, a forerunner of the modern slide-rule, which evolved as a result of successive developments by Edmund Gunther, William Oughtred and others. Other contributions to mathematics by Napier include important simplifying discoveries in spherical trigonometry. However, his discovery of logarithms was undoubtedly his greatest achievement.[br]BibliographyNapier's "Descriptio" and his "Constructio" were published in English translation as Description of the Marvelous Canon of Logarithms (1857) and W.R.MacDonald's Construction of the Marvelous Canon of Logarithms (1889), which also catalogues all his works. His Rabdologiae, seu Numerationis per Virgulas Libri Duo (1617) was published in English as Divining Rods, or Two Books of Numbering by Means of Rods (1667).Further ReadingD.Stewart and W.Minto, 1787, An Account of the Life Writings and Inventions of John Napier of Merchiston (an early account of Napier's work).C.G.Knott (ed.), 1915, Napier Tercentenary Memorial Volume (the fullest account of Napier's work).KF
См. также в других словарях:
Multiplication algorithm — A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are in use. Efficient multiplication algorithms have existed since the advent of the decimal system.… … Wikipedia
Division (mathematics) — Divided redirects here. For other uses, see Divided (disambiguation). For the digital implementation of mathematical division, see Division (digital). In mathematics, especially in elementary arithmetic, division (÷ … Wikipedia
Division by zero — This article is about the mathematical concept. For other uses, see Division by zero (disambiguation). The function y = 1/x. As x approaches 0 from the right, y approaches infinity. As x approaches 0 from the left, y approaches negative … Wikipedia
Multiplication — Multiply redirects here. For other uses, see Multiplication (disambiguation). For methods of computing products, including those of very large numbers, see Multiplication algorithm. Four bags of three marbles gives twelve marbles. There are also… … Wikipedia
Division (digital) — Several algorithms exist to perform division in digital designs. These algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow… … Wikipedia
Integer factorization — In number theory, integer factorization is the way of breaking down a composite number into smaller non trivial divisors, which when multiplied together equal the original integer.When the numbers are very large, no efficient integer… … Wikipedia
Ancient Egyptian multiplication — In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant multiplication), one of two multiplication methods used by scribes, was a systematic method for… … Wikipedia
Integer — This article is about the mathematical concept. For integers in computer science, see Integer (computer science). Symbol often used to denote the set of integers The integers (from the Latin integer, literally untouched , hence whole : the word… … Wikipedia
Transposable integer — A summary of this article appears in Repeating decimal. The digits of some specific integers permute or shift cyclically when they are multiplied by a number n. Examples are: 142857 × 3 = 428571 (shifts cyclically one place left) 142857 × 5 =… … Wikipedia
Greek arithmetic, geometry and harmonics: Thales to Plato — Ian Mueller INTRODUCTION: PROCLUS’ HISTORY OF GEOMETRY In a famous passage in Book VII of the Republic starting at Socrates proposes to inquire about the studies (mathēmata) needed to train the young people who will become leaders of the ideal… … History of philosophy
Inequality of arithmetic and geometric means — In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM GM inequality, states that the arithmetic mean of a list of non negative real numbers is greater than or equal to the geometric mean of the same list; and… … Wikipedia